

US009636524B2

US 9,636,524 B2

May 2, 2017

(12) United States Patent

Pantell et al.

(54) NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY

(71) Applicant: Adelphi Technology, Inc., Redwood

City, CA (US)

(72) Inventors: Richard Harris Pantell, Portola Valley,

CA (US); Charles Kevin Gary, Palo Alto, CA (US); Melvin Arthur Piestrup, Woodside, CA (US)

(73) Assignee: Adelphi Technology, Inc., Redwood

City, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/190,389

(22) Filed: Feb. 26, 2014

(65) Prior Publication Data

US 2014/0179978 A1 Jun. 26, 2014

Related U.S. Application Data

- (62) Division of application No. 13/532,447, filed on Jun. 25, 2012, now abandoned.
- (60) Provisional application No. 61/571,406, filed on Jun. 27, 2011.

(51) Int. Cl. A61N 5/10 (2006.01) G21K 5/08 (2006.01)

(45) Date of Patent:

(10) Patent No.:

(56)

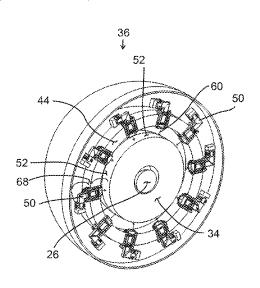
References Cited U.S. PATENT DOCUMENTS

4,112,306 A *	9/1978	Nunan	A61N 5/10
5 202 210 A *	2/1005	Eggers	315/502
			376/151
5,703,918 A *	12/1997	Hiismaki	
5,903,622 A *	5/1999	Yoon	376/458 H05H 3/06
C025 127 D1*	9/2005	Forman	376/110
0,923,137 B1	8/2003	roman	376/108

(Continued)

OTHER PUBLICATIONS

Cerullo et al., "An irradiation facility for Boron Neutron Capture Therapy application based on a radio frequency driven D-T neutron source and a new beam shaping assembly," Rev. Sci. Inst. v. 73, No. 10 (2002).*


(Continued)

Primary Examiner — Sean P Burke (74) Attorney, Agent, or Firm — Donald R. Boys; Central Coast Patent Agency, Inc.

(57) ABSTRACT

A therapy apparatus for producing thermal neutrons at a tumor site in a patient has a plurality of fast neutron sources surrounding a moderator, a fast neutron reflecting media around the fast neutron sources, a gamma-ray and neutron shielding media surrounding the fast neutron reflecting media, and a patient chamber positioned inside the moderator. The fast neutron sources are positioned around the moderator to maximize and direct the neutron flux to said tumor site.

8 Claims, 12 Drawing Sheets

